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Issues on attraction in autonomous mechanical systems with ideal holonomic bilateral constraints acted upon by potential 
gyroscopic dissipative force,,; and forces of sliding friction are considered. In particular, the semi-invariance of to-limit sets and 
the conditions for the dichc tomy of such systems are established. The investigation is based on the invariance principle using 
several Lyapunov functions, combining the methods of [1] with the La SaUe invariance principle [2, 3] applied to autonomous 
systems with a discontinuous right-hand side. © 1998 Elsevier Science Ltd. All rights reserved. 

Investigations of the dynamical properties of mechanical systems with sliding friction based on the theory 
of ordinary differential equations essentially involve constructing and developing a general mathematical 
theory of such equations. Two types of difficulties arise: the first is due to the possibility that the condition 
that all the motions slhall exist, be unique and be continuable without limit is violated (within the 
framework of the accepted mechanical model of the system, including the assignment of the friction 
forces in accordance with Coulomb's law); the second is associated with discontinuities of the generalized 
accelerations at points of relative rest (with discontinuous right-hand sides of the equations of motion), 
and make it impossible; to use well-developed methods of the classical theory of differential equations 
for systems with friction. 

The "non-uniqueness" or "impossibility" of motions, which was first pointed out by Painlev6 [4], has 
been the subject of numerous investigations (see [5-10]~). The current publications on this topic are 
mainly either discursive in character or involve both introducing and taking into account an additional 
mechanical hypothesis, studying the conditions under which Painlev6 paradoxes appear and analysing 
the regions where they manifest themselves. 

It is worth noting that even if the equations of motion are uniquely defined and consistent with 
Coulomb's laws (in which case there are no Painlev6 paradoxes), difficulties still arise in investigating 
these equations due to the discontinuous dependence of the friction forces on the generalized velocities. 

Below we investigate certain properties of the motions (semi-invariance of to-limit sets and the 
attraction of stagnant zones) of mechanical systems with sliding friction that were introduced and investi- 
gated in [11, 12]. The results are obtained using the mathematical theory of systems with friction, 
developed in [11-14]. 

We will first establish a modified principle of invariance for autonomous equations of a general form, 
which will enable us to define the conditions of attraction of motions of the system by a certain set M 
using a set of auxiliary Lyapunov functions. 

1. THE',  P R I N C I P L E  O F  I N V A R I A N C E  A N D  A T T R A C T I O N  
F O R  A U T O N O M O U S  S Y S T E M S  

C o n s i d e r  t h e  a u t o n o m o u s  d i f f e r en t i a l  e q u a t i o n  

=f(x) (1.1) 

with the function f :  f~ --) R ~ defined in some region g~ C R n. By a right-sided solution of Eq. (1.1) on 
[to, tl) with initial conditions (to, x0) we mean a continuous function x(t), which is differentiable from 
the right and defined in the interval [to, tl) , and satisfies the relations 

tPrikl. Mat. Mekh. Vol. 62,, No. 1, pp. 100-109, 1998. 
~:See also LE SUAN AN, Theory of mechanical systems with sliding friction. Unpublished paper. Voesoyuz. Inst. Nauch. Tekh. 

Inf., No. 84-V87. 

95 



96 V.M.  Matrosov and I. A. F inogenko 

D+x(t) =f(x(t)), X(to) = x o 

for  all t e [t 0, tl), where  D+x(t)  is the right derivative of  the function x(t) .  
Everywhere below it is assumed that the solutions of Eq. (1.1) are right-sided, t o = 0, and the following 

basic condit ions are satisfied for  Eq. (1.1). 
1. For  any initial state x0 e t ,  a local solution of  Eq. (1.1) exists. 
2. The  funct ion f(x)  is locally bounded.  
3. The  limit x( t )  of  any sequence  of  solutions of  Eq. (1.1) which converges uniformly in [to, tl) is a 

solution of  Eq. (1.1), provided that x(t) e f l  for  all t e [0, tl). 
Uniqueness  or  right-sided uniqueness  of  the solutions is not  assumed. Each  of  the condit ions 1-3 is 

obviously satisfied i f f  is cont inuous;  condit ions under  which they are satisfied even for  systems with 
friction are given in [12-14]. 

The  to-limit set o f  a solution x( t )  of  Eq. (1.1) defined in the maximum right-hand interval o f  existence 
[0, to) is deno ted  by A+(x). We will use the same definitions of  semi-invariance of  sets, a t t ract ion and 
weak  attraction as in [3]. 

L e m m a  1.1. Any solution of  Eq. (1.1) can be continued to the maximum right-hand interval of  existence 
[0, to), where  ei ther  to = +~0 or  to < + ~  and for any compact  set K C f l  there  is a point  tK e (0, to) 
such that  x(t) ~ K for  all t e (tr, to) (x(t) tends to the boundary  Of~ of  the set f l) .  

In particular,  if A+(x) N f~ # O, then to = + ~ .  

Proof. The existence of a continuation of the solution x(t) to the maximum right-hand interval of existence can 
be established using Zorn's lemma and basic conditions 1 and 2 above. 

To prove thatx(t) tends to the boundary of the set f2, assume otherwise. Then there is a compact se tK C f~, and 
sequences of points ti ---> to, x(ti) ---> a for which x(ti) e K and a e K. By an argument similar to that in [15 p. 26], it 
can be shown that limt.~x(t) = a. But then the solution x(t) can be continued to the right, which is impossible. 

For  completeness,  we will state some proper t ies  of  to-limit sets which are t rue for  any cont inuous 
curves: A+(x) is a closed set; A+(x) # O if, and only if, the funct ion IIx(t) II is not  infinitely large as t ---> 
to; the set A*(x) is bounded  if, and only if, the function x( t )  is bounded  and l imt . .~d(x( t  ), A*(x)) = 0 
where  d is the distance f rom the point  to the set. 

L e m m a  1.2. The  set A ~ A + (x) A f~ is semi-invariant. 

Proof. Let a e A ~ 0 .  Then, according to Lemma 1.1, to = +** and there is a sequence of points 
tk ~ +** such that tk+l - t k  > 0 for some ct > 0 and limk._,**X(tk) = a. 

It is obvious that the functionsyk(t) = x(tk + t), the solutions of Eq. (1.1), are defined in the interval [0, t~) and 
yk(O) = x(tk) ---> a. Since the function f is locally bounded, starting from some index k the sequence {Yk(t)}~' is 
uniformly bounded and uniformly continuous in some interval [0, tl], 0 < t 1 < t~ and the functionsyk(t) take values 
in the neighbourhood of the point a belonging to the set f~ together with its closure. Thus, by Artsei's theorem, 
there is a subsequence of this sequence which is uniformly convergent in [0, tl] and the limit y(t) of which will be 
a solution of Eq. (1.1), defined in [0, tl], with initial conditiony(0) = a. Obviously, y(t) e A for all t e [0, tl). 

Thus, for any a e A there is a solution y(t) of Eq. (1.1) which is defined in some interval [0, tl] and for which 
y(t) e A for all t e [0, tl). Thus for any a e A there is a solution y(t) of Eq. (1.1) with initial condition y(0) = a 
which cannot be continued in the set A, that is, y(t) e A for all t e [0, COy) and there is no solutionz(t) of Eq. (1.1) 
which is the same as y(t) in the interval [0, coy) and such that z(t) e A for all t e [0, ~ ) ,  where toz > ROy. 

I f ~  is not the right-hand end of the maximum interval of existence of the solutiony(t) (in the set f~), then limt._,~ 
y(t) e A exists and theny(t) can be continued in the set A, which is impossible. Hence, the solutiony(t) cannot b" 
continued. This proves that the set A is semi-invariant. 

4- 4- Note 1.1. IfA (x) C f2 is a bounded set, for any a e A (x) there is a solutiony(t) of Eq. (1.1) which is invariant 
with respect to AT(X) and defined in (--~, +~)  and satisfies the conditiony(0) = a. 

Le t  w(x) denote  an arbitrary function with non-negative values, def ined in the region ft.  We put  
E(w = O) ~ (x e ~:w(x)  = 0). 

For  a locally Lipschitz funct ion V: f l  --> R n, by virtue of  Eq. (1.1) we will deno te  the r ight-hand upper  
* +  

Dini derivative by D V(x).  It can be computed  using Yoshizawa s theorem (cf. [3, p. 269]) which, as 
is easily verified, also holds for  the systems discussed here.  

By L e m m a  1.2, with the given assumptions (under  the basic condit ions)  the La  Salle invariance 
principle applies to Eq. (1.1) for  au tonomous  systems, as stated in the theorems  o f  [2, 3]. It will be  
convenient  to put  these in a different  form, which can be proved as in [3, p. 190]. 
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Theorem 1.1. Let  x(t) be a non-continuable solution of Eq. (1.1) and V: f~ --¢/V' a locally Lipschitz 
function for which D**V(x) <~ -w(x) on [0, to). Then 

A + ( x ) n ~ c E ( w = O )  

Theorem 1.2. Suppose that for Eq. (1.1) and some set M C f~ there is a finite set of locally Lipschitz 
functions V/(x), 0 ~< i :~< N for which D*+Vo(x) <- -w(x) for allx e f~ and that for anyx e E(w = O)~tV1 
there is a function Vi, 1 ~< i <~ N f o r  which V~.(x) = 0 and D*+Vi(x) ~ O. 

Then for any non-continuable solution x(t) of Eq. (1.1), we have 

A + (x) c~ f l  ~ M (1.2) 

Here 

A + (x) ~ M w Off (1.3) 

and the following assertions are true: 
1. either IIx(t) II ~ ÷*~ orx(t) tends weakly to the s e tM t_J ~ as t ~ to; 
2. either x(t) is unbounded, or x(t) tends to the set M O ~2  as t ~ to; 
3. i f M  O Of2 = ~ ,  then [Ix(t) II ~ + ~  as t ---> to. 

Proof. The inclusion (1.3) follows from (1.2) and Lemma 1.1. Parts 1-3 of the theorem follow 
from (1.3). Thus if we can establish that condition (1.2) holds, the theorem will have been 
proved. 

The case A÷(x) = ~ or A+(x) C bf~ is trivial. Let A+(x) N f l  # O and a e A+(x) tq f~. Then 
to = + ~  and there is_~! sequence of points tk ~ + ~  for which limk__~(tk) = a. 

Suppose that a $ M. By virtue of Lemma 1.2 and Theorem 1.1, there is a solution y(t) of  Eq. (1.1) 
for which y(0) = a and y(t) e E(w = 0) for all t e [0, toy). Since the set M is closed, y(t) q~ M for all t e 
[0, 0t) for some o~ e [0, o1¢). 

It follows from the conditions of the theorem that there is afunction V/1 and a sufficiently small number 
ha > 0 for which V/l(a) -- 0, V/l(y(hx) ) ;~ 0 and 0'(hx)) ~ M. He_nee there is a function V/~, il ;~ i2 for 
which Viz(y(hx)) = O, Viz (y(hl + hz)) ~ 0 and y(hl + h2) ~ M for some h2 > 0 so small that it is 
also true that Vq (y(hl + h2)) ;~ 0. Continuing this process, we obtain a point tN = z/N=1 hi such that tjv 
e [0, cx), V/(y(t~r) ¢ 0 for all i = 1 . . . . .  N, y(tN) e E(w = 0)~M. This contradicts the conditions of the 
theorem, and so_(1.2) holds. This proves the theorem. 

For each x e f~, we will put 

Iw(x)  , , x e t a  
w(x) = [ limx, ~x,x, eflw( x ) , x ~ O~ 

We will say that the function V(x) is continuous up to the boundary if for each point x e OI) there is 
a finite limit limx._,x, x',-n V(x'). The function f will be said to be locally bounded on the boundary if 
for any pointx e Of~ the funct ionfis  bounded on the intersection of some neighbourhood ofx and the 
set [2. 

Theorem 1.3. Let Vc,(x) be a locally Lipschitz function which is continuous up to the boundary and 
for which 

D*+Vo(x) <~ -w(x) (1.4) 

for allx e f~, and let the function f be locally bounded on the boundary. Then A+(x) C E(w = 0) for 
any solution of Eq. (1.1) which is defined for all t ~> 0. 

Proof. Let a e A+(x). I f a  e t), the theorem follows from Theorem 1.1. 
Suppose that a e ~q~ and limtk_,+**x(tk) = a. It follows from the conditions of the theorem that there 

is a finite limit limtk__,+** 7(x(t)) = c. 
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L e t  a ~ E(w = 0). Then there are number 8 > 0 and ct > 0 such that w(x') > a for  all 
x'  ~ Ss(a) tq f l ,  where $8 ~ {x':llr -x'll  < 8}. Without loss of generality, for the sequence of points tk 
it can be assumed that tk+l - tk > h > 0 for all k = 1, 2 . . . . .  Since the funet ionf is  locally bounded on 
the boundary, there are numbers h0 ¢ (0, h) and k0 such that x(tk + t) E Ss(a) tq ~ for all t ~ [0, h0) 
and k I> k0. But then 

V(x( t ) )  <- V(x(O)) - ot(k - lco)11o 

provided that k > k0, t > tk+~. This last inequality contradicts the fact that the function V(x(t)) is bounded. 
Hence a e E(w = 0). This proves the theorem. 

Theorem 1.4. Let M C f l  be some set and Vo(x) a locally Lipschitz function which is continuous up 
to the boundary and satisfies inequality (1.4). We will assume that the function f is locally bounded on 
the boundary and that in some neighbourhood of the set f~ continuously di__fferentiable functions V/(x) 
(1 ~< i ~< N) with the following property are defined: for anyx e E ( w  = 0)~ / the re  is a function V,. such 
that V/(x) = 0 and for which D+Vi(x) ;~ 0 i f x  ~ (E(w = O) tq f lW1 

(grad Vi(x) , f (x ) )  > 0 for allf(x), ifx e (E(w = 0) fl t2)V14 

where f(x) are the limiting values of the function f at the point x. 
Then for any solutionx(t) of Eq. (1.1), which is defined for all t ~> 0, we have the inclusion 

(1.5) 

A÷(x) c ,~ (1.6) 

Here 
1. either Ilr(t)ll ~ +**, or x(t)  weakly tends to the set M as t ~ +-0; 
2. either the function x(t)  is unbounded or x(t)  tends to the set M as t --) +.0; 
3. i f M  -- O, then Ilx(t)ll ~ +oo as t ~ +oo for any solution of Eq. (1.1). 

Proof. By Theorem 1.2, in order to prove (1.6) it is sufficient to show that A + (x) N 0fl C M. Suppose 
otherwise, i.e. suppose a ~ (A+(x)Ni)fl)~Mexists. 

Let  x(tk) ~ a, where t --~ +.0, tt, ÷ x - tk > h > 0 for k = 1, 2 . . . . .  Since the function f is locally bounded 
on the boundary, the Artsel-Ascoli theorem shows easily that there is a sufficiently small number 
h0 e (0, h) for which there is a subsequence of the sequence of solutions yk(t) = X(tk + t), t ~ [0, h) of 
Eq. (1.1) which converges uniformly in [0, h0]. Let its limit be denoted byy(t). 

It is obvious that y(0) = a and y(t) ~ A÷(x) for all t e [0, h0). We will show that y(t) ~ bf~ for all 
t e [0, ct) for some tz E [0, h0). Assuming the contrary, we find that there is a sequence of points 
ti ~ +0, ti ~ 0 for which y(ti) q~ bf~ for all i = 1, 2 . . . . .  Then according to Theorem 1.2 y(ti) ~ M 
and, therefore, y(0) e M, which is impossible. From this contradiction and Theorem 1.3 we have 

B 

y( t )  ~ ( E ( w  = O) n ~ )  \ M 

for all t e [0, a)  for some small tx > 0. 
According to [16, p. 53 Lemma 1, p. 60 Corollary 1 and p. 56 Theorem 1] 

cont y(t) c F(y( t ) )  (1.7) 

for all t ~ [0, ct), where F(x) is the convex envelope of all the limiting values of the function f at each 

point x e f l  and cont y(t)  is the contingency of the function y(t). 
Let V/1 be a function whose existence is assumed under the conditions of the theorem for the point 

y(0). Then V/l(y(0)) = 0 and from (1.5) we have 

sup I(grad V~ (y(0)), z) :z  ~ F(y(0))} > 0 (1 .8)  

It follows from (1.7) and (1.8) that any right derivative Dini number of the function Vii along y( t )  at 
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the point t = 0 is non-zero. Thus there is a sufficiently small number hi ~ [0, ¢t) such that V/l(y(hD) 
O,y(h D ~ M. Then choosing the function V/2 such that V/e(y(hD) ffi 0, we ca___n see that there is a number 
h2 • 0 such that V/e(y(h 1 + he)) ~ 0, V/~(y(hl + he)) ~ 0, Y(hl + h2) ~ M. The proof continues as in 
Theorem 1.2. 

2. A T T R A C T I O N  IN SYSTEMS W I T H  F R I C T I O N  

We will now consider a mechanical system with k degrees of freedom, under ideal constraints which 
are holonomic and time-independent, with the forces of sliding friction added to the active forces. 

Its equations of motion can be written in Laplace form [11] 

d OT a OT a =Q.r+Qi/t ' i=l ..... k (2.1) 
dt ~ili ~qi 

Here Ta is the kinetic energy of the system, representing the sum Ta = T + 7"1 + To of the positive 
definite quadratic fo~n T of generalized velocities with the symmetric matrixA(q) = [a/j (q)]~, the linear 
form of the generalized velocities T 1 = ~i=1 ai(q)q i, and the function To(q). Let the generalized forces 
of sliding friction have the form 

-f~(q~,il~)lN,(q, il, ii)lsgnil s, if il~ s 0  

fs(q s, 0)l Ns(q, il,/~)l sgn Qsr°(q, il,/~), if ils = 0, 

Qr (q, il,/D = I Q r° (q, il,/i/)l > .f, (q', O) IN, (q, il,/~) I¢__o 

Qrs°(q, il, el), if ils = 0, 

I Qr°(q, il, #)I ~< f, fq', O)IN, fq, il, #)I#,=o 

k 

Qr°(q, il,#) A= Y. a,,j(q)~J-[g,(q, il)+Q:(q, il)]q= o 
j=l.j~s 

where 1 ~< s ~< k., k. ~< k,~(q ~, q~) > 0 are the friction coefficients, INs(q, q, t1 )1 are the moduli of the 
normal reactions, and Qs'°(q, q, q') are the friction forces at relative rest. For s = k. + 1 . . . . .  k we 
assumefs = 0. 

It can be assumed here, for example, that 
A 

Qj (q, il) = Ds(q, il)+Ks(q) 

r~(q, il) '~ ~T~ d aT t k /:aa~ aa~l " " ~ ~T° . . . .  • E  , -  • ilJ, Q;(q)ffi OqS dt Oil s j = l  [.Oq ~)qj ) OqS 

where Ds(q, q) are dissipative forces, Ks(q) = --01-I/Oq ~, II(q) is the potential energy of the system, 
Fs(q, q) are gyroscopic forces with the conditions Fs(q, 0) -- 0; Ds(q, O) and Q:(q) are generalized transfer 
forces of inertia (s = 1 . . . .  , k). Then (2.1) can be written in the form 

d ~T aT 
Oqi = Di + Fi + r i  + Qi¢ + Q r,  i = l ..... k 

dt 3il i 

and the function gs in the expression for the force of static friction is defined as 

k ~ ~ a s j  . / 
g,(q, il)=F,(q, il)+Q:(q)+ 1 Y. ~ il"il'- ~ Y V e i l  

Zv =I j= l  j=Iv =I 

Under certain conditions (ef. [14]) Eqs (2.1) are solvable for the generalized accelerations and become 

i~ = G(q, il) (2.2) 

with the discontinuous function G. Theorems of existence of right-sided solutions of (2.2) have been 
proved and their properties studied. In particular, all the properties 1-3 of Section 1 of the basic 
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conditions have been established [14, Lemma 2, Lemma 5 and Theorem 1]. Accordingly, we will take 
Eqs (2.1) and (2.2) to be equivalent and assume that f~ = R 2k. 

Let Iio a_ I-I + T -  To. Multiplying Eqs (2.1) by qi and then adding them, we obtain the equation of 
energy dissipation 

k. k 

D+Vo(q, il) = -~ ,  fi ]Ni I1'1 i I+Y. Di(q, ~])qi ( ~ O) 
i=1 i=1 

Let J C (1 . . . . .  k.). Defining 

wj(q, il)= Y~ f~lN;llqil, Hj ={(q,q):qi =O,i~J}  
i~J 

g j  = {(q, ~)):qi -- o, y , . INA~>lQr°l ,  i~J} 

g={(q,O):f~lNil>>-IK~+Qfl, i = l  . . . . .  k . ;  Ki+QT--O, i = k . + l  . . . . .  k} 

Obviously, if J" C J, then 

w~,<~wl<~-O+Vo, HjcHj,, g jcg~.  

a n d M  C M I c 1-1i C E(wj = 0) always. The set Mi s  the set of equilibrium positions for Eqs (2.1). The 
sets ~ and M are closed. 

As in [11, 12], we put N(q) = {i e (1 . . . . .  k.):q' = 0}. It is easily verified that (q, q)  e /-/j- ¢:~ 
J C N(q) and 

((q, il) ~ E(wj = 0) \ H j )  ¢:~ (J  \ N ( q ) ,  0) ^ (Vi e J \ N(q), I Nil.= 0) (2.3) 

It follows immediately from our assumptions and Theorem 1.1 that for any solution z(t) = (q(t), q(t)) 
of Eq. (2.1) and the set J C (1 . . . . .  k.), we have the inclusion A÷(z) C E(wl = 0). 

Theorem 2.1. Suppose that for some set J C (1 . . . .  , k.) there is a finite set of locally Lipschitz functions 
V/(q, q)  (i = 1, 2 . . . .  , N) for which 

(J  \ N(4) , 0) ^ (Vj e J \ N(q), [ Nil = 0) ~ (3i e (1, N), V/= 0, D*+V/~ 0) (2.4) 

Then A+(z) C Hj  for any solution z(t) of Eq. (2.1). 
The proof follows from (2.3), (2.4) and Theorem 1.2. 

Theorem 2.2. Suppose that condition (2.4) is satisfied for the se t J  C (1 . . . . .  k.). Then for any solution 
z(t) of Eq. (2.1)we have A+(z) C MI,  and: 

1. either IIz(t)ll ---> ~ or MI ~ ~ and z(t) tends weakly to Mj; 
2. either the solution z(t) is unbounded, or Mj ~ ~ and z(t) tend to Mj. 
The proof follows from Theorem 2.1, Lemma 1.2 on the semi-invariance of the set A+(z), the 

definitions of the set Mj  and the generalized friction forces Qs r. 

Theorem 2.3. Suppose that for the s e t J  = (1 . . . . .  k.) condition (2.4) is satisfied and the dissipation 
is total with respect to qk*+l . . . . .  q~, that is 

k k 
£ Di(q, il)il i <- -Y  ~, ii i2 (2.5) 
i=1 i = k . + l  

for some y > 0. Then for any solution z(t) of Eq. (2.1), h+(z) C M, and 
1. either [Iz(t)[I ---> ~ or M ~ O and z(t) tends weakly to M; 
2. either the solution z(t) is unbounded, o r M  ~ O and z(t) tends to M, 
3. M s  O ¢~ IIz(t)ll ---> ** for any solution z(t) of Eq. (2.1). 

+ + t Proof. We put w(q, q) = -D Vo(q~. q). Then h (z) C E(w = 0) and it follows from (2.5) that q = 0 
for all i = k, + 1 . . . . .  k, (q, q)  a A (z). The theorem now follows from Theorem 2.2 and I_~mma 1.2 
on the semi-invariance of the set A+(z). 
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3. E X A M P L E  

Consider a plane mechanical system consisting of a piston which moves with friction along an inclined rectilinear 
pipe, and a heavy absolutely rigid body which rotates with friction about a cylindrical hinge mounted on the piston 
(for a detailed description see [12]). 

The equations of motion of the system in Lagrange form, after transformation, can be written in the form 

rr~ + m 2 rcos 1~ = m 2 r[~ 2 sin 13 - mg sin ~t + QT 
(3.1) 

m 2 r cos[3.~ + J~ = -m2grsin(ot + [I)+ QT 

The moduli of the no~mal reactions have the form 

iNll = im2r(~si n[~ + [~2 cosl3) + mgcosct I 

IN21= m 2 [(J~ + r~ cos13- r~ 2 sin I~ + g sin ¢t) 2 + (r~sin 13 + r~ 2 cos [! + g cos 00 2 ]~ 

The generalized friction forces under equilibrium with respect to each of the generalized coordinates x, 13 can 
be written as 

QT0 = m2r([~cos~_[~2 sinl3)+mgsin~ (x = 0, £ = 0) 

Q2 T0 = m2r(~cos ~ + gsin(tx + [3)) (6 = 0, ~ = O) 

In the general case, the generalized friction forces are defined by the above rule for s = 1, 2, generalized 
coordinates ql = x, q2 = 13, velocities ql = ~, q2 = I~ and accelerations ql = $,//.2 = ~. 

The inequalities 6.4 of [12] give sufficient conditions for the assumptions of Section 1 to be satisfied for Eqs (3.1). 
The set of equilibrium positions for system (3.1) will be 

M = {(q, q):k = 0, 1~ = 0, 3~ ~> tgot, f2 ~> rlsin(0t +13)1} 

wherefx,f2 are the friction coefficients (constant quantities) in the piston and hinge, respectively. We take the basic 
Lyapunov function as the energy of the system 

V 0 --: T + H = ~ (n~ 2 + 2m2r,~[~cosl3 + j~2 ) + mgx sin ct + m2gr(l - cos(or + [~)) 

For the set of indices J0 = {1, 2} we consider the auxiliary Lyapunov functions 

V I =k,  V 2 =1~, V 3 =r~2 +gcos(ot+l~), V4 =sin(or+J3) 

and the function 

w = Ji INt Ilxl+f2 IN2 I1[~1 = -D+Vo 

We will show that condition (2.4) holds for system (3.1). The conditions (JoW(q) ~: O) A (Vj ~ JoW(q), INjl = 0) 
can be satisfied in one of the following three ways 

1) N(il)=12},lNll=O(~=O,k*O) 

2) N(4)=II},IN21=O(~O,x=O) 

3) N(it)=O, INII=O,IN21=O(~O,i~O) 

It is easy to see that the functions iN1 [ and IN2[ cannot both vanish at the same time, and thus Case 3 is impossible 
under any conditions. Consider Cases 1 and 2. 

1. IfD*[~ = 0, from tlae conditions INll = 0, 1~ = 0 we obtain mg cos ~ = 0, which is impossible (since 0 ~< cx < 
rd2). Hence, 1/'2 = 0, D+V2 ~ O. 

+ + 
2. I f D  ~ ;~ 0, then I/1 = 0 andD 1/1 ;~ 0. Let D+.~ = 0. Then from the condition IN2I = 0 we obtain 

r~ cosl3- r~ 2 sin ~ + gsintx = 0 
(3.2) 

r~sinl~ + r~ 2 cos~ + gcoso~ = 0 

Multiplying the first of Egs (3.2) by sin ~, the second by cos ~, and then subtracting the first equation of (3.2) from 
the second, we obtain r]3 ~ + gcos(ct + 13) = 0, and thus V 3 = 0. 
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From the second equat ion of  (3.1) under the condi t ion2 = 0, IN21 = 0, we find ~ = -m~grsin(ct  + ~)/J, whence 
it follows that  D÷V3 = -I~gsin(et + ~)(2r2m2/J+ 1). Thus, D÷V3 ~- 0 if sin (ct + ~) ~ 0. 

But if sin (ct + 13) = 0, then V4 = 0 and D÷V4 = cos (cz + 13)1~ ;e 0. This completes  the investigation of  the 
condit ions of Theorem 2.3 for Eqs (3.1). I t  can be concluded that  system (3.1) is dichotomous.  

We will make two concluding comments:  if tg ~t > f l ,  then M = O and there are no bounded  solutions in system 
(3.1) (to be more  precise, all the solutions are infinitely large); if tg t~ =/ '1,  then M = O, but  Eqs (3.1) have a 
solution (which is unbounded)  

x=:cot+Xo, ~=,~o, fl=l~0, I~=0 

where f2/> rlsin(~t + 130)1, :c0 < 0, which does not  tend to M even weakly. 

Th i s  r e s e a r c h  was  s u p p o r t e d  f inanc ia l ly  by  the  Russ i an  F o u n d a t i o n  fo r  Bas ic  R e s e a r c h  (96-01-00327) .  
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